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A b s t r a c t  

Symmetry coordinates are useful for describing nuclear 
arrangements of molecules that can be regarded as 
being distorted versions of more symmetrical reference 
structures. The symmetry coordinate description pro- 
vides a basis for analysing how displacements along 
particular subsets of symmetry coordinates destroy 
certain symmetry elements of the reference structure 
but preserve others (kernel and co-kernel symmetries). 
It also helps in visualising the symmetry properties of 
special subspaces of the (3N--  6)-dimensional internal 
coordinate space. Some problems concerning the choice 
of the reference point group are mentioned. It is shown 
that the symmetry properties of molecules possessing N 
cyclic degrees of freedom (e.g. torsion angles) are con- 
veniently described in terms of N-dimensional space 
groups. 

1. I n t r o d u c t i o n  
It 

It is often useful to regard the observed structure of a 
molecule or molecular fragment as a distorted version 
of a more symmetrical reference structure. In previous 
papers (Murray-Rust, Bfirgi & Dunitz, 1978a,b; herein- 
after MBDa,b) we have discussed some advantages of 
using symmetry coordinates for describing static 
distortions of M X  4 molecules from Ta-symmetrical 
reference structures. In this type of treatment the total 
distortion is regarded as a sum of displacements along 
some set of symmetry coordinates of the reference 
molecule. By fixing some of these displacements to 
zero, the observed structure can be related to other 
structures that retain some symmetry elements of the 
reference point group. In the present paper we consider 
how the approach outlined in MBDa can be generalized 
to describe distortions from a reference structure of any 
given symmetry. 

The essential feature of the symmetry-coordinate 
description is that the total distortion is broken down 
into various components, each preserving some of the 
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symmetry elements of the reference structure. An 
arbitrary displacement along a given symmetry coor- 
dinate transforming as a particular irreducible represen- 
tation (IR) preserves at least a certain symmetry known 
as the kernel symmetry of the IR in question. This 
kernel symmetry can easily be found from a character 
table; the symmetry elements preserved are just those 
whose characters equal the character of the identity 
element, i.e. those represented by unit matrices in the 
IR in question. Thus the kernel symmetry group is built 
from complete classes of the reference symmetry group. 
However, a displacement along a symmetry coordinate 
transforming as a degenerate IR may preserve a higher 
symmetry than the kernel symmetry, i.e. it may be 
transformed into itself by symmetry operations not 
belonging to the kernel of the IR. This higher symmetry 
is called the co-kernel (Melvin, 1956; McDowell, 1965) 
or epikernel (Ascher, 1977)symmetry. 

A good example of the distinction between kernel 
and co-kernel symmetry is provided by the three 
symmetry coordinates that describe out-of-plane defor- 
mations of a regular hexagon (Fig. 1). In terms of the 
IR 's  of the point group D6h , the Sl coordinate 
transforms as B2g, while S2a and SEb transform as the 
degenerate IR E2u. The characters of these represen- 
tations are: 

I 2 C  6 2C 3 C 2 3C; 3C~' i 2S 3 2S~ a 4 3ix a 30 v 
B2g 1 - 1  1 - 1  - 1  1 1 - 1  1 - 1  - 1  1 
Ezu 2 --1 - 1  2 0 0 - 2  1 1 - 2  0 0 

From this it follows that a displacement along the $1 
coordinate preserves the symmetry elements (/, 2C3, 
3C~', i, 2S 6, 3av), i.e. those forming the D3a point 
group. This is the kernel symmetry of the B2g 

+E j ~  ÷6 

-E 0 *6 

S 1 (B2g) S2a (E2u) S2b(E2u) 
Fig. 1. The three out-of-plane deformations of a regular hexagon. 
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r e p r e s e n t a t i o n .  T h e  k e r n e l  s y m m e t r y  o f  t h e  d e g e n e r a t e  

E2~ representation is only C 2. From Fig. 1 it is clear 
that while a displacement along S~ indeed preserves D3d 
symmetry, a displacement along either S2a or S2t , 
preserves a higher symmetry (D 2 or C2~ respectively) 
than the kernel symmetry C 2. Furthermore, it is easily 
shown that these higher symmetries do not apply to an 
arbitrary displacement that transforms as E2~. Since the 
S2,, and S2t, coordinates are degenerate, any normalized 
linear combination 

T a b l e  1. K e r n e l ,  c o - k e r n e l  s y m m e t r i e s  a n d  H g r o u p s  
f o r  d e g e n e r a t e  I R ' s  o f  c o m m o n  p o i n t  g r o u p s  

Elements of G preserved in K or CoK are given in brackets where 
necessary to specify the orientation of such elements. The symbols 
are those used by Wilson. Decius & Cross (1955). Special positions 
(SP) of the displacement vector corresponding to a particular 
co-kernel symmetry are listed only for cubic H groups and are 
identified by their point symmetry and. where necessary, one of the 
equivalent positions, as listed in International Tables for  X-ray 
Crystallography ( 1952). 

G 
S2a COS ct + S2b sin a 

C3 
is a n  e q u a l l y  g o o d  c h o i c e  fo r  o n e  o f  a p a i r  o f  s y m m e t r y  c ,  

c o o r d i n a t e s  t r a n s f o r m i n g  as  EEu. F o r  an  a r b i t r a r y  v a l u e  c5 

o f  a ,  a d i s p l a c e m e n t  a l o n g  s u c h  a c o o r d i n a t e  will  
c6 

preserve only the kernel symmetry C 2, the only non- 
trivial symmetry element common to SEa and SEt,. It is 

D3 only for certain special values of a that the higher co- D4 
kernel symmetries apply (a  = 0, 60, 120 ° for D E ,  a = 

30, 90, 150 ° for CEv ), Fig. 2. Ds 
The possible co-kernel symmetries of  degenerate IR's 

are not as simple to derive as the kernel symmetries and D6 
they can be looked at from several points of view. We 
prefer to think of co-kernel symmetries in terms of the 

C3r 
symmetry properties of a vector space that can be c,,. 
associated with the IR in question; the eigenvectors 
(special positions) of this vector space can be said to c5,, 
correspond to possible co-kernel symmetries. We now 
p r o c e e d  t o  a m o r e  f o r m a l  d i s c u s s i o n  o f  s o m e  o f  t h e  C6v 

p o i n t s  r a i s e d  in th is  I n t r o d u c t i o n .  

S2a {E2u) 

O 

S2b(E2ul 

m s 

ITI ~ 

Fig. 2. Deformation space for the degenerate pair of symmetry 
coordinates Sza(E2,,) and S2b(E2u) that describe out-of-plane 
deformations of a regular hexagon (Fig. 1). The symmetry of the 
space is 6m. Displacement vectors pointing along the mirror lines 
m at a = 0, 60, 120 ° correspond to deformations that preserve 
C2, symmetry of the hexagon; vectors pointing along the mirror 
lines m' at a = 30, 90, 150 ° correspond to deformations that 
preserve D 2 symmetry of the hexagon. For an arbitrary value of 
a the displacement vector corresponds to a deformation that 
preserves only C2 symmetry, the kernel symmetry of the E2u 
irreducible representation. There are 12 such isometric defor- 
mations. 

C3h 

C4h 

Csh 

C61, 

D3h 

D4h 

Dsh 

D6h 

Fj K CoK H 

E C t - 3 

E C l - 4 
E l C I - 5 
E 2 C I - 5 
E t C l - 6 

E2 C2 - 3 

E C I C 2 3m 
E C t C2(C'2) 4m 

c2(c~') 
E I C 1 C 2 5m 
E 2 C t C 2 5m 
E, C t C2(C ~) 6m 

c2(cD 
E 2 C2(C 2) D 2 3m 

E C, Cs 3m 
E C I C~(o,) 4m 

C,(<ra) 
E l C I Cs 5m 
E 2 C l C s 5m 
El Ci C~(o~) 6m 

C~(oa) 
E 2 C 2 C2~. 3m 

E'  C~ - 3 
E"  C I - 6 
E~ C i - 4 
E u C s - 4 
El Cs - 5 
E~ C s - 5 
E' I' C l - 10 
E~' C l - 10 
Ele C i - 6 
E2~ C2h - 3 
Etu C~ - 6 
E2u C 2 - 6 

E'  Cs(on) C2v 3m 
E"  C I C 2 6m 

C~(o) 
Ee C i C2h( C' z) 4m 

C2~(C7) 
E,, C~(o h) C2~(C 9 4m 

C2~(C~') 
E~ Cs(Crh) C2,, 5m 
E~ Cs(Oh) C2v 5m 
E',' C, Cs(o v) 10m 

C2 
E~' C l Cs(o,) 10m 

C2 
Ele C i C2h(C'2) 6m 

C2h(C7) 
E2~ C2h(C2) D2h 3m 
E,,, C~(o h) C2~(C ~) 6m 

c~(c7) 
g2u C2(C2) C2v(°v) 6m 

D2 
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Table 1 (con t . )  Table 1 (con t . )  

G ~ K CoK H G r s K CoK H 

S 4 E C 1 - 4 T E D2 - 3 
S 6 Eg C l - 3 T C1 C2 23 

E u C,  - 6 C3 
S 8 E,  C, - 8 T a E D2 Dzd 3m 

Ez Cz - 4 T, C, S 4 432 
E 3 C 1 -- 8 C3 

Dza E C 1 Cz(C 9 4m Cs 
Cs(aa) T z C, Czv 43m 

D3d Eg C t Czh 3m C3~ 
E u C l C z 6m Cs 

Cs T k Eg D2 n - 3 
E,, D z - 6 

D4d E, C, C2(C' z) 8m Tg Ct Czh 23 
C~ S 6 

E z Cz(Cz) Czv 4m T u C, C2~ m3 
DE C 3 

E 3 C, Cz(C ~) 8m C s 
C~ O E Dz(C24) D 4 3m 

Dsa Elx Ci C2h 5m Ti Cl C4 432 
E2g C I Czh 5m C 3 
El,, C l C 2 10m C2(C2) 

Cs T z C, D2(C2,C2) 43m 
Ez,, C, C 2 10m D 3 

Cs C2(Cz) 
D~t E,  C~ C2(C~) 12m 0 h Eg Dzh(C~,C~) D4h 3m 

Cs Eu 2 2 D2(C4,C4) D 4 6m 
E 2 C2(C z) C2v 6m Dza 

D 2 Tlg C t C4h 432 
E a C a C3v 4m S 6 

93 C2h(Cz) 
E 4 S 4 D2a 3m T2g Cl Dzh(C~,C24) 43m 
E 5 C, C2(C 9 12m D3a 

C~ C2~(C2) 

Coo v E, C, C s ~ m  T,~ C, C4v m3m 
E z C, C s ~ m  C3v 
etc. C2v(C9 

Doo n fig C I C2h(C 9 ~ m Cs(oa) C~(oh) 
Ag C~ Czn(Cz) oo m Tz~ C, Dze(CZ,C2) m3m 
etc. 

f l  u C, Czv( C 9 oo m D a 
A u C, C2~(C2) oo m Cz~(C2) 
etc. C2(C2) 

Cs(O h ) 

SP 

4 

3 

2 
mm 
3m 
m 

2 
3 
mm 
3 
m 

4 

3 
2 
mm 
3m 
m 

4 
3 
2 
mm 
3m 
m 
4ram 
3m 
mm 
m(xxz)  
m(oyz) 
4ram 
3m 
mrn 
m(xxz)  
rn(oyz) 

2. Kernels, homomorphlc images and co-kernels 

Every irreducible representation Fj of a point group G is 
associated with an invariant subgroup, K(G,Fy), called 
the kernel of the representation. Its elements are the 
dements  of G represented in F~ by unit matrices, i.e. the 
elements of G whose characters in ~ equal the 
character of  the identity element. In general, more than 
one class of elements of G is represented in Fj by the 
same matrix. The set of  distinct matrices form another 
group, H(G, Fj), the homomorphic image of G with K 
serving as the kernel of the homomorphism.  The order 
h of  H equals g / k  where g is the order of G and k the 
order of  K; this follows since H is isomorphic with the 
factor or quotient group 6/K.  

A displacement that transforms as Fj is transformed 
into itself by all operations in K. It therefore shows at 
least the kernel symmetry,  and so does the con- 
figuration obtained by applying the displacement to the 
reference molecule. We shall refer to such a con- 
figuration as a kernel configuration. In general, 
operations not belonging to K (we call them R) convert 
the displacement into other displacements that are 
equivalent in the sense that they correspond to the same 
changes in interatomic distances and angles, but 
distinct in the sense that they correspond, in general, to 
different orientations of the distortion, that is, they 
produce isometric nuclear configurations. 

The group H(G, Fj) can be regarded as the set of 
operations that convert a displacement vector trans- 
forming as ~ into an equivalent displacement vector 
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(Fig. 2).* If we interpret H as a point group, we can talk 
about special positions of this group. Such positions are 
associated with elements of H that are images of 
operations R of G not contained in K. Different special 
positions correspond to different operations. 

Since every position, special or general, may also be 
identified with a Fj displacement vector, it follows that 
there are operations R of (3 not contained in K that 
leave the orientation of particular Fj displacements 
(those corresponding to vectors in special positions) 
unchanged. Thus, although a displacement in Fj shows 
at least the kernel symmetry of Fj it may show a higher 
symmetry called the co-kernel symmetry (Melvin, 
1956) and symbolized CoK(G,Fj,R). As McDowell 
(1965) has pointed out, this can arise only for displace- 
ments transforming as certain degenerate represen- 
tations. Table 1 contains a list of K, Co K and H groups 
for all degenerate representations of the common point 
groups. 

2.1. Non-degenerate representations 
The transformation matrices that form these 

representations are either [+1] or [--1], so the only H 
groups possible are of order one for the totally 

* We talk somet imes  about  displacements,  somet imes about  
displacement  vectors.  In the former  case we are concerned with 
var iance or invariance under the s y m m e t r y  operat ions  of  the 
reference point group 13; in the latter with var iance or invariance 
under s y m m e t r y  operat ions  of  the H group. 

symmetric representation and of order two for the other 
non-degenerate representations. 

A displacement along a symmetry coordinate trans- 
forming as a non-degenerate IR spans a one- 
dimensional space in which the only possible point 
symmetry groups H(G,F i) are 1 and m.* 

For a totally symmetric representation, H = 1, 
K = G; hence a displacement transforming as this IR 
retains the point group symmetry of the reference 
molecule. The displacement vectors DiS i and - D i S  t 
correspond to different configurations, e.g. one may 
lead to a lengthening of a particular set of symmetry- 
equivalent bonds, the other to a contraction. 

For a non-totally symmetric representation, K is a 
group of order g/2 and H = m. Thus D i S i and -D  i S t 
correspond to equivalent configurations, differing in 
orientation, with a kernel symmetry K lower than that 
of the reference molecule. 

2.2. Doubly degenerate representations (E) 

The transformation matrices are all of the type 

[ cos2nj/n sin2nj/n] 

- s in  2 nj/n cos 2nj /n J' 

* To avoid confusion we shall use H e r m a n n - M a u g u i n  symbols  
(m, 3, 3m, 432, etc.)  to describe point groups  i somorphic  with H 
groups.  Sch6nfliess symbols  ( C  s, C 3, C3~, T ,  etc .)  are reserved for 
describing the point group {3 of  the reference molecule,  its kernel K 
and possible co-kernels CoK. 

Scheme 1. Derivation of H, K and CoK for A 2u and E 2 g  representations of D6h 
R I 2C 6 2C 3 C 2 3C~ 3C;' i 2S3 

M V/3 1 1 V ~ 1 
0 0 0 0 

1 --2 2 -2 2 2 

o o o l /LO o o ONLOO o o o 
M(A2~) (1) (1) (1) (1) (--1) ( -1 )  (--1) ( -1 )  ( -1 )  (--1) (1) (1) (z) 

2S 6 o h 3 o a 3 G 

l ll II ll il lil 0 1 o o  1 o o  0 1 0  x 
2 2 

~ 1 
0 o i  0 0 1 0 0 ! 

2 2 

0 0 0 0 0 

The matrices M transform a vector (x ,y ,z)  into a symmetry-equivalent one. The basis vectors are e~ parallel to C 6, e x parallel to C[, and ey parallel to C~'. 
The matrices M(A2,,) are obtained by transforming z by the matrices M. The kernel is composed of the elements I, 2 C  6, 2C3, C 2, 3o'a, 30" v that yield unit 
matrices (K = C6v, k = 12). Elements of H are (1) and (-1) ,  H = m, h = 2: no co-kernel symmetry. 
The matrices M(E2g) are obtained by transforming x and y by the matrices M, substituting the transformed x and y into the expressions x 2 - y2, 2xy ,  and 
comparing the transformed and untransformed expressions. The kernel is composed of the elements I, C 2, i, Oh that yield unit matrices (K = C2h, k = 4). 
Elements of H are: 

I:li: 1  ll1001I 
2 2 1 /  2 2 _]l_ 2 

H = 3m, h = 6. Co-kernel symmetry D2h = K(/,C2,i,O'h) + KC~ = K + KC~' = K + Ko v -- K + Ko a = K + C~ + C~' + o v + o d. 
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where n is the order of the rotation axis (proper or 
improper) and j is an integer. 

The H groups formed by these matrices are iso- 
morphic with the cyclic groups n or the dihedral groups 
nm (n > 3) and are listed in Table 1 for doubly 
degenerate IR's of all important point groups G. The 
derivation for two such groups, H(D6h,A2,,) and 
H(D~h,E2x) is given in Scheme 1. 

Recall that there are two general positions for the 
one-dimensional point-group H = m" D and --D; there 
are no special positions except D = 0. Similarly, for the 
cyclic groups H - - n  there are n general positions and 
no special positions except D = 0. However, for the 
dihedral groups H = nm, there are 2n general positions 
and either one or two sets of n special positions (the 
mirror lines), depending on whether n is odd or even. A 
displacement vector that happens to lie in one of these 
special positions is left unaltered by the corresponding 
reflection operation of H = nm and hence the displace- 
ment itself is left unaltered by the corresponding 
operation R of the reference point group G (or 

operations, R' ,  R " , . . . ,  since elements belonging to 
different classes of G may have the same image in H). 
The displacement vector is, however, altered by the other 
reflection operations of H =nm,  the disolacement by the 
corresponding operations of G. The operations R, R', 
R " . . .  do not belong to the kernel K(G,Fj) since their 
images in H are not unit matrices. Any R in G which 
has as its image a mirror line in H may be associated 
with K to form a co-set KR, and combination of this 
co-set with the kernel forms a co-kernel, CoK(G,Es,R ). 
The co-kernel is a non-invariant subgroup of G since it 
includes the operations R, R', R" ... but excludes other 
operations belonging to the same classes as these 
operations. For doubly degenerate IR's the only co- 
kernel generators R are a~, a a, C~ and C~'. For H = nm 
with n even, there are two classes of mirror lines, m and 
m', and therefore also two kinds of co-kernel which are 
isomorphic but composed of elements belonging to 
different classes of G. For n even, moreover, D i S~ and 
-Dg S~ correspond to equivalent configurations, which 
is not the case for n odd. 

Scheme 2. Derivation o f  H, K 

R I 8C3 6C2 6C4 3C~ = 3C 2 i 

o o 1 o f o o  i o  
o i o  i i M k 1 0 0 0 0 

o o o i  Ol  o o 

M(TIg) 1 0 0 0 0  0 
0 0 0 i 0 1 0 1  0 

M(T28) 1 0 0 0 
0 0 0 1  0 i  0 1  0 

and CoK f o r  Tlg, Tzg and Eg representations o f  O h 

6S 4 8S~ °lI  0 1 0  0 
f o o 

0 [ 0 0 l I o  1 i l  I~ 1 1  0 O0 i l  

O(lll i l  1 i l  I i  1 i lO0 

30h 60 a 

i o 0 i 

0 1 0 1R (z)_J 

I i  0 0 I~ 1 i l  [Yz 1 i 0 0 zx 
0 1  0 xy 

1 : :  V2z2xy21 

The matrices M transform a vector (x,y,z) into a symmetry-equivalent one. The base vectors ex, ey, e~ are parallel to the C~ = C 2 axes. 
The matrices M(TIg ) are obtained by transforming x, y, and z by the matrices M, substituting the transformed values into the expressions 
R (x) = (0,y,0) x (0,0,z) etc., and comparing transformed and untransformed expressions. The kernel is composed of the elements I, i that 
yield unit matrices (K = Cl, k = 2). Elements ofthe H group are the matrices corresponding to L 8C3, 6Cv 6(?4, 3C~ (H = 432, h = 24). 
Co-kernel symmetries S 6 = K(LO + K[C3 + C 2] = K + C 3 + C 2 + S~ + S~, 

Czh= K(LO + KC2 = K + C z + Oh, 
C 4 , = K ( L 0 +  K[C,+ C~+ C~]=K+ C , + S  4+ C~+a h+ C~+ S~. 

The matrices M(Tz~ ) are obtained by following an analogous procedure for the expressions yz, zx, xy. 
The kernel is composed of the elements I, i that yield unit matrices (K = C~, k = 2). 
Elements of the H group are the matrices corresponding to I, 8C 3, 6C 2, 6C 4, 3C[ (H = 43m, h = 24). 
Co-kernel symmetries: D3a = K(I,i) + K[C 3 + C~ + o(xy) + o(yz) + o(zx)l = K + 2C 3 + 2S 6 + 30 a + 3C2, 

D2h = K(I,t~ + K[C~ + o(xy) + a(xf)] = K + 3C~ + 3G, 
C2h = K(I,0 + Ktr(xy) = K + tr h + C2. 

The matrices M(Eg) are obtained by following an analogous procedure for the expressions (2z 2 - x z -y2), V/~(x 2 _ y2). 
The kernel is composed of the elements I, 3C~, i, 30h that yield unit matrices (K = D2h, k = 8). 
The H group is 3m, h = 6 [see example 1, case of D6h(E2g)]. 
Co-kernel symmetry D4h = K(L3C2,i,30h) + KC4. 
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2.3. Triply degenerate representations (T)* 

For triply degenerate representations the H groups 
are formed by three-dimensional matrices and are 
isomorphic to cubic groups (Table 1, Scheme 2). For 
these groups there are two kinds of special positions: 
lines (one degree of freedom) and planes (two degrees 
of freedom). The operations associated with both kinds 
are possible co-kernel generators (they are images of 
some R in t] but not in K). Note that the H groups ~,3m 
and 432, though isomorphic, are not equivalent in this 
context as they are associated with different special 
positions. For Tju, representations DiS i and - D i S  t 
correspond to equivalent configurations since H = m3m 
or m3, which contain 1 as image of i in Oh or T h respec- 
tively. For all other representations this is the case only 
if D i S i is perpendicular to a dyad axis (2) or mirror 
plane (m) of H. 

2.4. Reducible representations 

A displacement vector containing components trans- 
forming as different IR's transforms as a reducible 
representation of (] whose character is equal to the sum 
of the characters of the IR's involved. The kernel 
symmetries of reducible representations are determined 
in the same way as for IR's, and similarly for their H 
groups. For example, for the reducible representation of 
the point group C2v built from the IR's A 2, B~, B 2, the 
three-dimensional H group may be shown to be 222 
with special positions along the coordinate axes. 
Similarly, for the reducible representation of C 4 built 
from the IR's B and E, the three-dimensional H group is 
4. Possible co-kernel symmetries of displacements 
transforming as reducible representations may be 
derived by inspection of the special positions of the 
appropriate H group. However, with increase in the 
dimensionality of the reducible representation, the inter- 
pretation of the H group as a geometrical point group 
becomes less helpful in visualizing its symmetry 
properties: it is difficult to visualize geometric sym- 
metry operations even in four-dimensional space. 

2.5. Choice o f  basis vectors 

By a suitable choice of basis vectors it is possible to 
express the special positions of H in a particularly 
simple form. For example, with H = 3m or H = 6m it is 
advantageous to use a trigonal or hexagonal coordinate 
system, as in crystallography. Another possibility is to 
use polar coordinates, r, ~0. The angular coordinate is 
conveniently chosen so that q~ = 2nj /n  ( j  = 1, 2 . . . .  , n) 
at the mirror lines. For the cubic groups one has the 
alternative of using Cartesian basis vectors or a set of 

* Icosahedral groups, which in addition to triply degenerate also 
have quadruply and quintuply degenerate IR's, will not be discussed 
here. 

four linearly dependent, non-orthogonal basis vectors 
directed along the threefold axes and related by Sa + St, 
+ S c + S a = 0. 

In general it is advantageous to choose a set of 
symmetry displacement coordinates so that at least one 
such coordinate coincides with a special position of H. 
Different sets of symmetry displacement coordinates 
transforming as the same IR should be chosen so that 
one coordinate of each set coincides with the same 
special position of H and not with an equivalent one. 
This ensures the easy recognition of co-kernel sym- 
metries (MBDa). 

Co-kernel symmetry of normal vibration modes 
has been discussed by McDowell (1965), but our 
treatment differs in some respects from his. Any 
displacement resulting from distortion along a degener- 
ate pair or triple of normal vibrations must possess at 
least the kernel symmetry of the appropriate IR, but the 
individual components may be chosen to show a higher 
symmetry, a co-kernel symmetry. In this sense, the co- 
kernel symmetry of a normal mode may indeed be said 
to 'depend on the choice of basis set', as McDowell puts 
it. In our treatment, co-kernel symmetry occurs if the 
displacement vector lies in a special position of the H 
group, and this coincidence of displacement vector and 
special position does not depend on the choice of basis 
set. All that can be said is that a suitable basis set 
expresses components of a displacement vector show- 
ing co-kernel symmetry in a specially simple form. 

3. Kernel, co-kernel and averaged configurations 

The overall distortion can be expressed as a displace- 
ment vector D = dj pj = [d j (obs) -  dj(ref)] pj where dj's 
are components along some set of internal displace- 
ment coordinates pj (bond lengths, bond angles, etc.). 
Given the reference point group t] we may also write 
D = D i Si where D~'s are displacements along a set of 
orthonormal symmetry displacement coordinates 
S~ = Tup j. Since the transformation is unitary, the 
matrix T that transforms the initial basis vectors pj into 
the new basis vectors S~ also transforms the initial 
displacements dj into the new symmetry displacements 
D i, i.e. D i = T i j  dy. 

Just as the operation of the total displacement vector 
on the reference structure leads to the observed struc- 
ture, so a subset of symmetry displacements can be 
chosen to produce the structure of an idealized 
molecule that contains only a part of the overall 
distortion of the observed molecule. Such a structure 
can be selected to have particular kernel or co-kernel 
symmetries and we shall refer to it as a kernel or co- 
kernel configuration. A subset of symmetry displace- 
ments belonging to a particular representation produces 
a configuration which necessarily shows the kernel 
symmetry of that representation, and appropriately 
chosen subsets produce configurations with co-kernel 
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symmetries. The parameters that describe a particular 
kernel or co-kernel configuration are given by 

dl(K) or dj (CoK)  = di(ref  ) + TiiDi, 

summed over the relevant subset of symmetry displace- 
ments. The kernel or co-kernel configurations thus 
correspond to the configurations that the molecule 
would have if certain symmetry displacements were 
zero. 

Any idealized configuration obtained by appropriate 
averaging over the internal parameters of a molecule is 
a kernel or co-kernel configuration. On the other hand, 
as pointed out in MBDa (§ 3), not every kernel or co- 
kernel configuration can be obtained by a simple 
averaging process (see also §4.2). 

S¢(A 1) = - - ~  s, + s~ 

1 
-- / , .  (2r x -  r y , -  ryz), 

V o 

S;(A 1) = s3. 

The unprimed coordinates are the simplest, but the 
primed ones might be useful if comparisons are to be 
made between distortions of M X Y  2 and M Y  3 molecules, 
as will be seen in the next example. The kernel 
symmetries are K(A]) = C2v, K(B1) = Cs(ev) , K(B2)= 
C s (tr'). There are no co-kernel symmetries. 

4. Examples  

4.1. M X Y  2 molecule with G = C2v 

Consider the case of an observed M X Y  2 molecule 
that is to be related to a reference molecule with C2v 
symmetry and coordinates pj. There are 3 x 4 -  6 
independent pj's, of which 2 x 4 -- 3 = 5 can be chosen 
in the plane of the reference molecule. As independent 
internal coordinates pj we take r x, ryl, ry2, 01,  02 and A 
(Fig. 3). The corresponding symmetry coordinates are 
obtained from these by the transformation: 

1 1 / V/2 V/2 0 0 0 0 ry I S1(A~) ] 

1 1 
¢2 0 0 o o r,2| s,( 2)f 

/ 
0 0 1 0 0 0 r x S2(A1) [ 

1 1 
0 0 0 V/2 V/2 0 o, S3(A,)I 

1 I 
0 0 0 V/2 V/2 o o2 S~(Bgl  

_ 0 0 0 0 0 1 _ _A S6(B, )  ] 

The displacements D i along these coordinates S i are 
obtained by substituting dj = dj(obs) - dj(ref) for pj in 
the above expression, but it is only for the totally 
symmetric coordinates that the reference values are 
actually required; for the other coordinates they cancel 
out. Three symmetry displacement coordinates trans- 
form as A 1; any other set of three, mutually orthogonal, 
normalized, linear combinations of these could serve as 
an alternative set of basis vectors, for example: 

S~(A, )=  S, + --7~ $2 = - - ~ ,  (r x + ry, + ryE), 

4.2. M Y  3 molecule with G = D 3 h  

The internal coordinates are rl, rz, r3, 01, 02, 03, A 
(analogous to Fig. 3) with one equation of constraint.* 
The symmetry coordinates are: 

1 
SI(A~) = ~--~- (rl + r E + r3), 

s~(AT) = A, 

1 
S3a(E' ) = - ~  (2rl -- r 2 -- r3) , 

1 
S3b (E ' )  = - ~  (r 2 - -  r3) , 

1 
S4a(E')  = -~-~" (20, -- 02 -- 03), 

1 
S 4 b ( E '  ) = ~ (02 - -  03). 

V z  

* A 2 = {sin 2 01/d 2 + sin 2 g2/d 2 + sin 2 03/d  2 

+ 2(cos 01 cos 02 - cos 03)/d I d 2 

+ 2(cos 82 cos 03 - cos Ol)/d 2 d 3 

+ 2(cos 01 cos 03 -- cos O2)/dt d3} -1 ~2 2, 

where 

0 2 = l - c o s  20  l - c o s  2 0 2 - c o s  2 0 3 + 2 c 0 s 0 1  cos 02 cos03.  

x 

Y2 "~2 Y1 
Fig. 3. Internal  coordina tes  for M X Y  2 molecule with C2v reference 

symmet ry .  
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The kernels are K(A~) = D3h, K(A~') = C3,, K(E')  = 
C~(ah). The S3a and S4a coordinates are chosen so that 
both are transformed into themselves by the mirror 
plane passing through rl and bisecting 0~ in the 
reference molecule. Displacements along S3a o r  S4a or 
both show co-kernel symmetry,  Co K(E ' , a , )  = C2~. 

For observed bond lengths d t, d2, d 3 and an 
arbitrarily chosen reference bond length d o , the bond 
lengths of the E '  co-kernel configuration are obtained 
from 

J - -  

!d I 

d~ 

d~ 

- 1  2 
0 43 ,/6 

1 1 1 

~ 3  ~ 6  ~ 2  

1 1 1 

_V/3 V/6 V/2_ 

v/3do 

1 
(2dl -- d 2 -- d3) 

0 

as  

d I = d o + }(2d, -- d 2 -- d3), 

d~ = d~ = d o - ~(2d 1 - d 2 - d3). 

The overall C2v co-kernel configuration involves 
displacements along St(A~) (K = D3a, a supergroup of 
CEv) as well as Saa(E'), and its bond lengths are: 

d~' = d o + ~(2d I - -  d 2 - -  d3) 

+ -~(d I + d2 + d 3 - 3do) = d 1, 

d~' = d;' = d o -- ~(2d I -- d 2 -- d3) 
1 

+ ~ ( d  I + d 2 + d 3 - -  3d0) = ½(d z + d3), 

the same as obtained by averaging with respect to C2. 
symmetry. 

The redundant coordinate 

1 
Ss(A 9 = ~ (0~ + 02 + 03) 

is also suitable to describe the out-of-plane displace- 
ment provided we neglect the sense of this displace- 
ment. A displacement along S 5 can be related to the 
square of the out-of-plane displacement A by the 
approximation 

S1 = A 2 ~- S 12(2n V/3 - -  $5)/9 ~- d 2 ( 2 n / V / 3  - $5)/3, 

where d is the mean bond length. 

4.3. Out-of-plane distortion of a regular pentagon with 
G = Dsh 

There are nine displacement coordinates, of which 
seven lie in the plane of the pentagon. The two 
remaining symmetry displacement coordinates trans- 
form together as the E l' representation of Dsh (K = 1, 
H = 10m, Scheme 3); 

Sa(E~')= V/'~ ~. zicos4ni/5, 
i 

S 0 ( E l ' ) =  V/~~  zt sin 4ni/5 , 
i 

z i being the deviation of the ith atom (i = 1, 2, 3, 4, 5) 
from the plane of the regular pentagon, i.e. the mean 
plane of the distorted pentagon. Alternatively, the 
displacement vector may be expressed in terms of polar 
coordinates R, a; 

R = (S~ + S~) ''2, 

cos a = Sa/R, sin a = Sb/R. 

In the above description, S a and S b are chosen to lie in 
mirror lines of H; the mirror line (m) occupied by S a 
(a = 0) is the image of a o v operation of G, the one (m') 
occupied by S b ( a = 9 0  °) is the image of a C 2 
operation, so that although S a and S b each corresponds 
to a co-kernel symmetry,  the two symmetries are 
different. In fact, a distortion along S a corresponds to a 
mirror-symmetric envelope form, a distortion along S b 

R I 

M Ii ° 1 

o 

Scheme 3. Derivation of H, K and CoK for E~' representation of Dsh 
2C 5 2C~ 5C2 Oh 2S5 2S~ 5a v 

OIfCSo1 -So CO 0~110 I/-S'l.][_ CtS' C'O O0 O i l  100 OoitlO01100 Ooi If-SCo COIlS'So Oq~C]ALo'-S'oC, O O0[llil 0011 I ]yxz 

where C = cos 2n/5, S = sin 2n/5, C' = cos 4n/5 and S' = sin 4n/5. 
The matrices M(E~') are obtained by procedures analogous to those followed in Scheme 1. 
They represent the operations (1), 2(52), 2(5-1), 5(rn), (2), 2(10-1), 2(103), 5(rn'); H = 10m, h = 20. 
The kernel consists of I, K = C~, k = 1. Co-kernel symmetries are C s = (I + or), and C 2 = (I + C~). 
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to the twist form with a dyad axis (Fig. 4). Rotation of 
the displacement vector through 4zm/5 produces an 
equivalent distortion that differs from the original only 
by rotation of the pentagon through 2zm/5. Rotation of 
the displacement vector through 180 ° produces an 
equivalent distortion related to the original by reflection 
in the plane of the pentagon: the dyad axis of H is the 
image of the a h operation of G. 

This discussion constitutes a group-theoretical back- 
ground for the description of out-of-plane distortions of 
cyclopentane rings by Pitzer & Donath (1959) and 
Altona, Geise & Romers (1968). The latter authors use 
torsion angles ~pj around bonds j instead of z~'s of 
atoms i as the out-of-plane coordinates. The ¢p's and z's 
transform in the same way, and the three conditions 
that reduce the five ~p's or z 's  to only two independent 
out-of-plane coordinates are of the same form: 

1 
p =0, 

Sa(E~') = V/~Z p icos  27~i/5 = 0 ,  

Sb(E~') = V/] 'Z p / s in  2z~i/5 = 0 .  

These equations are strictly valid only for infinitesimal 
puckering amplitudes although they hold well even for 
strongly puckered rings. The geometric meaning of the 
constraints is different for the ~p's and z's. For the z 's  
(positional coordinates) they are the conditions of no 
net translation or rotation; for the ~p's (internal 

+ 

Fig. 4. Deformation space for the degenerate pair of symmetry 
coordinates S,(E'~') and So(E'2') that describe out-of-plane 
deformations of a regular pentagon. The symmetry of the space 
is 10m. Displacement vectors along any of the mirror lines m (or 
m') preserve C s (or C2) symmetry of the pentagon. The series of 
non-planar pentagons so obtained is indicated schematically (the 
circles identify the vertex that lies in the mirror plane of each C s- 
symmetric pentagon). A displacement vector in an arbitrary 
direction preserves no non-trivial symmetry elements of the 
pentagon: the kernel symmetry of the E i' irreducible represen- 
tation consists only of the identity operation. 

coordinates) they are the ring closure conditions for an 
equilateral pentagon. 

4.4. Out-of-plane distortion of  regular hexagon with 
G : O6h 

This is the example that was briefly referred to in the 
Introduction. Of the three out-of-plane symmetry 
displacement coordinates, one transforms as the Bzg 
representation of D6h (K = D3a, H = m) while the other 
two transform as E2u (K = C 2, H = 6m), Figs. 1 and 2. 

1 
S ( B 2 g ) = - ~ Z  z, (-- 1)', 

t 

1 
Sa(E2u ) -- - -~ ~ z ic°s4ni /6 ,  

T" 
1 

Sb(E2u) = - - ~  Z zi sin 4ni/6. 
T" 

Further discussion follows closely along the lines of the 
previous section. 

4.5. Jahn-Teller distortion of  M X  6 molecule with 
G = Oh 

Octahedral MX 6 molecules with M = Cu(II), 
Ag(II), low-spin Co(II) or high-spin Cr(II) show a 
(t~ge3g), (t6zge~) or (t3ge~) electronic configuration corre- 
sponding to an electronically degenerate 2Eg ground 
state and are thus expected to undergo Jahn-Tel ler  
distortion along displacement coordinates of Eg sym- 
metry. These may be defined as 

1 
S2a(Eg) = ~ (2rl -- r 2 -- r 3 + 2r  4 -- r 5 -- r6) , 

S20(Eg) = ½(r z -- r 3 + r 5 -- r6). 

Of the six M--X  distances r 1, r z . . . .  , r6, we choose r i and 
ri+ 3 to be co-linear. The kernel symmetry K(Eg)= DEn, 
and H(On,Eg) = 3m. In the above description the basis 
vector Sza is chosen to lie in a mirror line of H. This line 
is the image of 2C4, 2C2, 2S4, and 2a a operations of the 
reference point group, so the co-kernel symmetry of a 
displacement along Sza is D4h. A positive displacement 
corresponds to tetragonal elongation of the M X  6 
molecule, a negative displacement to tetragonal 
compression, i.e. D2a S2a and -Dza S2a are non- 
equivalent. The orthogonal basis vector SEb does not lie 
on a mirror line of H, and a corresponding displace- 
ment shows only the kernel symmetry;  DEbS2b and 
--DEb SEb describe equivalent distortions since they are 
related by a mirror line of H. 

In terms of polar coordinates 

= S 2 '11/2 R ( S ~ +  20, , 

cos a = S2JR,  sin a = S2b/R. 
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The energy surface for the Eg subspace has been 
studied extensively (Ammeter, B/irgi, Gamp, Meyer- 
Sandrin & Jensen, 1979) and shows minima at R = R f r 
:/: 0, a = 0, 2n/3, and 4n/3 (tetragonal elongation). 
Saddle points occur at R ~ RjT , a ---- re~3, n, and 5z r~3 
(tetragonal compression). This type of potential is 
commonly described as a 'warped Mexican hat' 
potential (Fig. 5). 

5. Isometric groups 

The above discussion is concerned with special aspects 
of the more general group-theoretical treatment of 
isometric groups given by Bauder, Meyer & Giinthard 
(1974), who provide a basis for determining symmetry 
properties of many-dimensional energy hypersurfaces 
relevant to the dynamics of molecular isomerizations. 

We start by defining a molecular fragment, its 
reference structure with point symmetry G, and a set of 
coordinates (internals, Cartesians, symmetry coordin- 
ates) that constitute a basis for a representation of G. 
Symmetry-equivalent distortions of the fragment must 
be energetically equivalent, i.e. the energy hypersurface 
must be invariant to all symmetry operations of G. 
However, it is generally not so easy to visualize 
symmetry properties in the many-dimensional space 
that is involved. Our discussion is meant to help 
visualization of the symmetry properties of particular 
subspaces of the (3N-6)-dimensional  internal coor- 
dinate space, subspaces containing symmetry coordin- 
ates transforming as a given IR. In this connection it is 
helpful to interpret the H groups as point symmetry 
groups in one-, two- or three-dimensional space. The 
eigenvectors of the transformation matrices constituting 
a given H group are then readily recognized as the 

Fig. 5. Warped Mexican-hat type of potential surface for Jahn- 
Teller distortion of MX~ molecule with O h reference symmetry, 
based on the symmetry coordinates S2a(Eg) and S2b(Eg ). The 
symmetry of the deformation space is 3m, and displacement 
vectors along the mirror lines correspond to deformations that 
preserve D4h symmetry (elongated or compressed octahedron). 

special positions of that H group. These special 
positions correspond to the fixed points of internal 
isometric groups. 

6. Choice of reference group G 

6.1. General remarks 

So far we have implicitly taken for granted that the 
reference group G is the point group associated with a 
reference molecule. This is unobjectionable as long as 
the distortions involved are small enough or of such a 
nature that they do not convert the reference structure 
into another structure that could equally well serve as 
the reference. Depending on the problem, the group G 
may also be chosen as that formed by all operations 
that convert a given reference structure into isometric 
structures. These operations may include, for example, 
inversion, internal rotations, as well as the operations of 
the point group of the reference structure. Two 
examples illustrate these general remarks. 

For an M S  4 molecule the reference point group G 
could be chosen as T a or  D4h or any of their subgroups. 
With G = T a there is one particular displacement 
coordinate, So(E),  that eventually produces a D4h 
structure and, if followed further, leads to the T a 
structure of opposite chirality to the initial one. For a 
complete description of this process, the appropriate 
reference group G has to contain an inversion operation 
(even though this is not present in Ta) leading to a 
group isomorphic with O~. 

A second example is provided by diphenylmethane, 
where conformations with the planes of both phenyl 
groups either parallel or perpendicular to the 
C - C H 2 - C  plane have C2~ symmetry. Rotation of 
either phenyl group through n produces a conformation 
that is isometric with the initial one. Symmetry 
operations of this kind are not included in point groups 
but they have to be allowed for in the group of all 
operations that leave the reference structure invariant 
(Longuet-Higgins, 1963; Altmann, 1967; Bauder, 
Meyer & G/inthard, 1974). 

6.2. Periodic H groups 

In the previous example, the torsion angles about the 
C - C H  2 bonds are cyclic coordinates. The H group 
describing the symmetry properties of displacement 
vectors involving these coordinates may be derived in 
just the same way as for non-cyclic coordinates but it 
now corresponds to an infinite group containing 
elements of translational symmetry, in other words, to a 
space group rather than to a point group (Fig. 6). We 
can define the torsion angles as ~p~ and ~P2 modulo n, in 
which case the H group relevant to the two torsional 
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degrees of freedom can be shown to be cmm with the 
coordinate axes along the symmetry coordinates 

1 
s~(,42) = - ~  (~, + ¢9, 

1 
St,(B,) = -~--~ (¢~ - ¢2). 

The special positions (0,0), (n/2,n/2) correspond to 
molecular conformations with C2v symmetry, the 
positions with ¢1 -- - ¢ 2  (S~ = 0) and with ¢1 = 0, 
¢2 = n/2 or ¢1- -n /2 ,  ¢2 = 0 correspond to confor- 
mations with C s symmetry, and positions with ¢1 = ¢2 
(St, = 0) correspond to conformations with C 2 
symmetry. 

Non-rigid molecules that can be regarded as consist- 
ing of a set of internal rotors superimposed on an essen- 
tially rigid frame (e.g. diphenylmethane), can always be 
described in terms of the appropriate periodic H group. 
The general positions of these groups depend essen- 
tially on the appropriate point group symmetry F: of the 
frame, while the lattice translations depend on the 
periodicities of the rotors. For N m-fold rotors, there 
are m s lattice points in the N-dimensional hypercube of 
edge 2n, and the number of general positions within 
such a hypercube becomes m'Vf  where f is the order of 
F. Special positions of the periodic H group correspond 
to molecular conformations that are distinguished by 
having some non-trivial point group symmetry (kernel 
or co-kernel symmetry). For triphenylmethane (three 
twofold rotors, F--C3v), the H group relevant to the 
three torsional degrees of freedom is R32 (order six) 

/ o  

k o. ",,/o 
o /  O / o  

 y/o \ 
0 -~\ 0 / / "  ~-------~ ¢1 

o \ / o  x,/ 
Fig. 6. The 16 general positions (open circles) in the square of area 

(2n) 2 correspond to 16 isometric conformations of diphenyl- 
methane with different values of the torsion angles ¢~ and ¢2. If 
the pattern is extended indefinitely its primitive lattice has trans- 
lations ¢~ = ~, ¢2 = n, and its plane group is cmm (with unit 
translations of the centred cell along S~ = % + ~2, S2 = % - qh). 
The special positions of this plane group correspond to 
conformations with non-trivial symmetry: (0,0), etc., C2~; (~,~), 
etc., Cs; (S~,0), C2; (0,Sz), etc., C s. 

with eight lattice points in the cube (2 n) 3. For trimethyl- 
boron (three threefold rotors, F = D3h), the corres- 
ponding H group is R3c (order 12) with 27 lattice points 
in the cube. For tetraphenylmethane (four twofold 
rotors, F = Ta), the corresponding H group is four-di- 
mensional. It can be described as having 16-fold KU- 
centring (Wondratschek, Billow & Neubilser, 1971) 
and 384 general positions (i.e. 24 in the primitive cell), 
and it is isomorphic with space group 24/04/01/002 in 
the classification of Brown, Billow, Neubilser, Won- 
dratschek & Zassenhaus (1978). For this molecule 
there is an additional complication. The highest point 
group symmetry of tetraphenylmethane is D2d for 
special orientations of the phenyl groups. Rotation of 
the phenyl groups away from these special orientations 
lowers the molecular symmetry; however, certain finite 
rotations produce conformations that again have D2d 
symmetry, but with the S 4 axis in a different direction 
to the initial one. The rotations in question correspond 
to displacement vectors that lie in the special positions 
of highest multiplicity (24) in the four-dimensional 
space group. The properties of periodic H groups will 
be discussed in more detail elsewhere (Bilrgi & Dunitz, 
1979; see also Dunitz, 1979). 
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